
Linear	Search

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.5

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Many	problems	involve	searching
• General	recursion	is	well-suited	to	search	
problems.

• In	this	lesson,	we'll	talk	about	a	simple	case:	
linear	search	

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– Recognize	problems	for	which	a	linear	search	
abstraction	is	appropriate.

– Use	general	recursion	and	invariants	to	solve	
problems	involving	numbers

3

Example	#1:	function-sum

function-sum :
Nat Nat (Nat -> Number)
-> Number

GIVEN: natural numbers lo ≤ hi and
a function f,
RETURNS: SUM{f(j) | lo ≤ j ≤ hi}

4

Examples/Tests
(begin-for-test

(check-equal?
(function-sum 1 3 (lambda (j) j))
(+ 1 2 3))

(check-equal?
(function-sum 1 3 (lambda (j) (+ j 10)))
(+ 11 12 13)))

5

Let's	generalize

• As	we	compute,	we	will	have	computed	the	
sum	of	some	of	the	values.		Let's	call	that	sum	
sofar.

6

lo hi

sofar contains	the	sum	of	the	
f(j)	for	j	in	this	region

Representing	this	picture	as	data

7

lo hi

sofar contains	the	sum	of	the	
f(j)	for	j	in	this	region

i

We	can	represent	this	picture	with	4	numbers:
• lo	
• i,	which	is	the	first	value	of	j	to	right	of	the	boundary
• hi,	and
• sofar,	which	is	the	sum	of	the	f(j)	 for	j	in	the	brown	region

So	what	we	want	to	compute	is
sofar +	SUM{f(j)|i ≤	j	≤	hi}

This	is	a	function	of	i,	hi,	
sofar,	and	f.

Contract,	Purpose	Statement,	and	
Examples

;; generalized-function-sum :
;; Nat Nat Number (Nat -> Number) -> Number
;; GIVEN: natural numbers i and hi, a number sofar,
;; and a function f,
;; WHERE: i ≤ hi
;; RETURNS: sofar + SUM{f(j) | i ≤ j ≤ hi}

;; EXAMPLES/TESTS:
(begin-for-test

(check-equal?
(generalized-function-sum 1 3 17 (lambda (j) j))
(+ 17 (+ 1 2 3)))

(check-equal?
(generalized-function-sum 1 3 42 (lambda (j) (+ j 10)))
(+ 42 (+ 11 12 13))))

8

What	do	we	know	about	this	function?

if	i =	hi,	then	
(generalized-function-sum i hi sofar f)
= sofar + SUM{f(j)|i ≤ j ≤ hi}
= sofar + SUM{f(j)|hi ≤ j ≤ hi}
= (+ sofar (f hi))
= (+ sofar (f i))

9

What	else	do	we	know	about	this	
function?

if	i <	hi,	then
(generalized-function-sum i hi sofar f)
= sofar + SUM{f(j)|i ≤ j ≤ hi}
= (sofar + f(i))

+ SUM{f(j)|i+1 ≤ j ≤ hi}
= (generalized-function-sum

(+ i 1) hi (+ sofar (f i)) f)

10

take	(f	i)	out	of	the	
SUM

So	now	we	can	write	the	function	
definition

;; STRATEGY: If not done, recur on i+1.
(define (generalized-function-sum i hi sofar f)
(cond
[(= i hi) (+ sofar (f i))]
[else (generalized-function-sum

(+ i 1)
hi
(+ sofar (f i))
f)]))

11

What	happens	at	the	recursive	call?

12

sofar contains	the	sum	of	the	
f(j)	for	j	in	this	region

lo hii

ilo hilo hii

The	shaded	region	expands	by	one

What's	the	halting	measure?

• Proposed	halting	measure:	(hi	– i).
• Termination	argument:
– (hi	– i)	is	non-negative,	because	of	the	invariant	

i ≤	hi
– i increases	at	every	call,	so	(hi	– i)	decreases	at	
every	call.

• So	(hi	– i)	is	a	halting	measure	for	generalized-
function-sum	

13

We	still	need	our	original	function
;; function-sum :
;; Nat Nat (Nat -> Number) -> Number
;; GIVEN: natural numbers lo and hi, and a
;; function f
;; WHERE: lo ≤ hi
;; RETURNS: SUM{f(j) | lo ≤ j ≤ hi}
;; STRATEGY: call a more general function

(define (function-sum lo hi f)
(generalized-function-sum lo hi 0 f))

14

Just	call	generalized-function-sumwith	
sofar =	0.

Example	#2:	Linear	Search
;; linear-search : Nat Nat (Nat -> Bool) -> MaybeNat
;; GIVEN: 2 natural numbers lo and hi,
;; and a predicate pred
;; WHERE: lo ≤ hi
;; RETURNS: the smallest number in [lo,hi) that satisfies
;; pred, or false if there is none.
;; EXAMPLES/TESTS
(begin-for-test
(check-equal?
(linear-search 7 11 even?) 8)

(check-false
(linear-search 2 4 (lambda (n) (> n 6)))))

15

Remember,	this	
means	the	half-
open	interval:
{	j	|	lo	≤	j	<	hi}

What	are	the	trivial	cases?

• if	(=	lo	hi),	then	[lo,hi)	is	empty,	so	the	answer	
is	false.

• if	(pred lo)	is	true,	then	lo	is	the	smallest	
number	in	[lo,hi)	that	satisfies	pred.

16

What	have	we	got	so	far?
(define (linear-search lo hi pred)
(cond
[(= lo hi) false]
[(pred lo) lo]
[else ???]))

17

What's	the	non-trivial	case?

• If	(<	lo	hi)	and	(pred lo)	is	false,	then	the	
smallest	number	in	[lo,hi)	that	satisfies	pred
(if	it	exists)	must	be	in	[lo+1,	hi).

• So,	if	(<	lo	hi)	and	(pred lo)	is	false,		then
(linear-search lo hi pred) =
(linear-search (+ lo 1) hi pred)

18

Function	Definition
;; STRATEGY: If more to search and not found, then recur
;; on (+ lo 1)
(define (linear-search lo hi pred)
(cond
[(= lo hi) false]
[(pred lo) lo]
[else (linear-search (+ lo 1) hi pred)]))

19

What's	the	halting	measure?

• The	invariant	tells	us	that	lo	≤	hi,	so	(- hi	lo)	is	
a	non-negative	integer.

• lo	increases	at	every	recursive	call,	so	(- hi	lo)	
decreases.

• So	(- hi	lo)	is	our	halting	measure.

20

Summary

• We've	seen	how	generative	recursion	can	deal	
with	problems	involving	numerical	values

• We've	seen	how	context	arguments	and	
invariants	can	help	avoid	recalculating	
expensive	values

• We've	seen	how	invariants	can	be	an	
invaluable	aid	in	understanding	programs

21

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– Recognize	problems	for	which	a	linear	search	
abstraction	is	appropriate.

– Use	general	recursion	and	invariants	to	solve	
problems	involving	numbers

22

Next	Steps

• Study	the	files	08-6-function-sum.rkt	and	08-
7-linear-search.rkt

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

23

